Guided Reading Activity

networks

The Geographer's World

Lesson 2 The Geographer's Tools

Essential Question: How does geography influence the way people live?

Directions: Read each section. As you read, use your textbook to help you fill in the blanks to complete the sentences.

Using Globes and Maps

The most accurate	e way to show places or	Earth is with a		
(1)	Globes are mode	Globes are models of the world. They show		
distances and dire	ctions between places	more correctly than flat images of		
Earth do.				
(2)	are not round like	are not round like globes. Instead, they are		
(3)	representations o	representations of the round Earth. Maps convert, or		
change, a round sp	pace into a flat space. M	laps are not as		
(4)	as globes. Howev	_ as globes. However, maps have benefits that globes		
do not have. Maps	s can show smaller area	s of Earth with much more		
(5)	than globes can.	than globes can. Maps tend to show more kinds of		
(6)	than globes. Map	than globes. Maps can also be		
(7)	·			
All About Map	s			
Maps have several	important (8)	, or features. These		
features are the to	ools the map uses to cor	nvey information.		
The (9)	tells you wha	t area the map will cover. The		
(10)	unlocks the mea	aning of the map for you. It does so		
by explaining the	symbols, colors, and lin	es on the map.		

Guided Reading Activity cont.

networks

The Geographer's World

The scale bar is an impor	ant part of the map. It tells you how a measured			
space on the map corresp	onds to (11) on Earth. You use			
the (12)	to understand direction. This map feature			
points out north, south, e	ast, and west.			
To convert the round Ear	h to a flat map, geographers use			
(13)	A map projection (14) some			
aspects of Earth in order	to represent other aspects as accurately as possible			
on a flat map. Mapmaker	s choose which projection to use based on the			
(15)	of the map.			
Scale is another importar	t feature of maps. The (16)			
connects distances on the	e map to actual distances on Earth. Scale is the			
relationship between dist	ances on the map and on Earth. Different types of			
scale have benefits and d	rawbacks. Mapmakers also choose which scale to			
use depending on the ma	p's (17)			
The two types of maps ar	e (18) and			
(19)	The type depends on what kind of information is			
drawn on the map. Gene	al-purpose maps show a wide range of information			
about an area. Thematic	naps show more (20)			
information.				
Geospatial Technolo	gies			
GPS devices work with a	network called the (21) This			
network was built by the	United States government. The GPS has three			
elements. The first eleme	nt of this network is a set of more than 30			
(22)	that orbit Earth at all times. The second part of the			
network is the (23)				
consists of GPS devices o	n (24) These devices receive			
the (25)	sent by the satellites. By combining the signals			
from different satellites, a	device calculates its location on Earth in terms of			
(26)	. GPS is used in many ways.			

Guided Reading Activity cont.

networks

The Geographer's World

Another important ge	ospatiai technology is knowr	n as	
(27)	These systems consist of	computer hardware and	
software that gather, s	store, and analyze geographic	c information. The	
information is then sh	own on a (28)	A GIS is a powerfu	
tool because it links d	ata about all kinds of physica	l and human features	
with the locations of those features. Because computers can store and			
process so much data,	, the GIS can be very accurate	e and	
(29)	·		
Since the 1970s, satell	ites have gathered (30)	about	
Earth's surface. They do so using remote sensing, which means getting			
information from far away. Satellites get information in different ways. Some			
satellites gather this information regularly on every spot in the world.			